Search from various Englisch teachers...
HogoFogo
please help me with "easy" integrals
hi everybody,
can somebody help me with these integrals? i would be really thankful for any advice.
e^(arcsin x) dx
e^(arccos x) dx
e^(arctg x) dx
e^(arccotg x) dx
6. März 2009 14:03
Antworten · 3
the derivative: 1/2 *( [sqrt(1-x^2)+x] * e^(arcsinx) )'
= 1/2 *[ 1/2 *(-2x) /sqrt(1 - x^2)+1 + x/sqrt(1 - x^2) +1 ] * e^(arcsinx)
= 1/2 *2e^(arcsinx)
= e^(arcsinx)
7. März 2009
OMG!!!!!!!!!!
7. März 2009
/ e^(arcsinx)dx = x * e^(arcsinx) - / x * e^(arcsinx)/sqrt(1-x^2) dx
= x * e^(arcsinx) + / 1/2 * e^(arcsinx) * 2 d sqrt(1 - x^2)
= x * e^(arcsinx) + e^(arcsinx) * sqrt(1 - x^2) - / sqrt(1 - x^2)/ sqrt(1 - x^2) e^(arcsinx) dx
= x * e^(arcsinx) + e^(arcsinx) * sqrt(1 - x^2) - / e^(arcsinx)dx
then can get: / 2e^(arcsinx)dx = x * e^(arcsinx) + e^(arcsinx) * sqrt(1 - x^2) + C'
then: / e^(arcsinx)dx = 1/2 * e^(arcsinx) [x + sqrt(1 - x^2)] + C
or : let arcsinx = u, (-pi/2 < u < pi/2 ), then x = sinu, dx = cosu du ,
/ e^(arcsinx) dx = / e^u * cos u * du
= / cos u * d e^u
= cos u * e^u + / e^u sin u du
= cos u * e^u + / sin u d e^u
= cos u * e^u + sin u * e^u - / e^u cos u du
then can get : 2 / e^u cos u du = cos u * e^u + sin u * e^u + C'
then : / e^u cos u du =1/2 [ cos u + sin u * ] * e^u + C
= 1/2 [ sqrt(1 - x^2) + x] * e^(arcsinx) + C
7. März 2009
Haben Sie noch keine Antworten gefunden?
Geben Sie Ihre Fragen ein und lassen Sie sich von Muttersprachlern helfen!
HogoFogo
Sprachfähigkeiten
Tschechisch, Englisch, Deutsch, Slowakisch
Lernsprache
Englisch, Deutsch
Artikel, die Ihnen gefallen könnten

🎃 October Traditions: Halloween, Holidays, and Learning Portuguese
11 positive Bewertungen · 0 Kommentare

The Curious World of Silent Letters in English
6 positive Bewertungen · 4 Kommentare

5 Polite Ways to Say “No” at Work
17 positive Bewertungen · 3 Kommentare
Weitere Artikel